93 research outputs found

    High Impedance Detector Arrays for Magnetic Resonance

    Full text link
    Resonant inductive coupling is commonly seen as an undesired fundamental phenomenon emergent in densely packed resonant structures, such as nuclear magnetic resonance phased array detectors. The need to mitigate coupling imposes rigid constraints on the detector design, impeding performance and limiting the scope of magnetic resonance experiments. Here we introduce a high impedance detector design, which can cloak itself from electrodynamic interactions with neighboring elements. We verify experimentally that the high impedance detectors do not suffer from signal-to-noise degradation mechanisms observed with traditional low impedance elements. Using this new-found robustness, we demonstrate an adaptive wearable detector array for magnetic resonance imaging of the hand. The unique properties of the detector glove reveal new pathways to study the biomechanics of soft tissues, and exemplify the enabling potential of high-impedance detectors for a wide range of demanding applications that are not well suited to traditional coil designs.Comment: 16 pages, 12 figures, videos available upon reques

    Optimized Quantification of Spin Relaxation Times in the Hybrid State

    Full text link
    Purpose: The analysis of optimized spin ensemble trajectories for relaxometry in the hybrid state. Methods: First, we constructed visual representations to elucidate the differential equation that governs spin dynamics in hybrid state. Subsequently, numerical optimizations were performed to find spin ensemble trajectories that minimize the Cram\'er-Rao bound for T1T_1-encoding, T2T_2-encoding, and their weighted sum, respectively, followed by a comparison of the Cram\'er-Rao bounds obtained with our optimized spin-trajectories, as well as Look-Locker and multi-spin-echo methods. Finally, we experimentally tested our optimized spin trajectories with in vivo scans of the human brain. Results: After a nonrecurring inversion segment on the southern hemisphere of the Bloch sphere, all optimized spin trajectories pursue repetitive loops on the northern half of the sphere in which the beginning of the first and the end of the last loop deviate from the others. The numerical results obtained in this work align well with intuitive insights gleaned directly from the governing equation. Our results suggest that hybrid-state sequences outperform traditional methods. Moreover, hybrid-state sequences that balance T1T_1- and T2T_2-encoding still result in near optimal signal-to-noise efficiency. Thus, the second parameter can be encoded at virtually no extra cost. Conclusion: We provide insights regarding the optimal encoding processes of spin relaxation times in order to guide the design of robust and efficient pulse sequences. We find that joint acquisitions of T1T_1 and T2T_2 in the hybrid state are substantially more efficient than sequential encoding techniques.Comment: 10 pages, 5 figure

    Hybrid-State Free Precession in Nuclear Magnetic Resonance

    Full text link
    The dynamics of large spin-1/2 ensembles in the presence of a varying magnetic field are commonly described by the Bloch equation. Most magnetic field variations result in unintuitive spin dynamics, which are sensitive to small deviations in the driving field. Although simplistic field variations can produce robust dynamics, the captured information content is impoverished. Here, we identify adiabaticity conditions that span a rich experiment design space with tractable dynamics. These adiabaticity conditions trap the spin dynamics in a one-dimensional subspace. Namely, the dynamics is captured by the absolute value of the magnetization, which is in a transient state, while its direction adiabatically follows the steady state. We define the hybrid state as the co-existence of these two states and identify the polar angle as the effective driving force of the spin dynamics. As an example, we optimize this drive for robust and efficient quantification of spin relaxation times and utilize it for magnetic resonance imaging of the human brain

    On Sensitivity and Robustness of Normalization Schemes to Input Distribution Shifts in Automatic MR Image Diagnosis

    Full text link
    Magnetic Resonance Imaging (MRI) is considered the gold standard of medical imaging because of the excellent soft-tissue contrast exhibited in the images reconstructed by the MRI pipeline, which in-turn enables the human radiologist to discern many pathologies easily. More recently, Deep Learning (DL) models have also achieved state-of-the-art performance in diagnosing multiple diseases using these reconstructed images as input. However, the image reconstruction process within the MRI pipeline, which requires the use of complex hardware and adjustment of a large number of scanner parameters, is highly susceptible to noise of various forms, resulting in arbitrary artifacts within the images. Furthermore, the noise distribution is not stationary and varies within a machine, across machines, and patients, leading to varying artifacts within the images. Unfortunately, DL models are quite sensitive to these varying artifacts as it leads to changes in the input data distribution between the training and testing phases. The lack of robustness of these models against varying artifacts impedes their use in medical applications where safety is critical. In this work, we focus on improving the generalization performance of these models in the presence of multiple varying artifacts that manifest due to the complexity of the MR data acquisition. In our experiments, we observe that Batch Normalization, a widely used technique during the training of DL models for medical image analysis, is a significant cause of performance degradation in these changing environments. As a solution, we propose to use other normalization techniques, such as Group Normalization and Layer Normalization (LN), to inject robustness into model performance against varying image artifacts. Through a systematic set of experiments, we show that GN and LN provide better accuracy for various MR artifacts and distribution shifts.Comment: Accepted at MIDL 202
    corecore